
ChatMaps Deliverable 5
Use Case Models

Stephen Goodridge, Clark LaChance, Nicholas Pease, Joseph Gallant, Aidan Bradley

COS420

21 April 2024

Github: https://github.com/ChatMaps/ChatMaps

Kanban: https://trello.com/b/TaygvBv7/chatmaps

https://github.com/ChatMaps/ChatMaps
https://trello.com/b/TaygvBv7/chatmaps


Use Case Diagram #1



Use Case Descriptions

Use Case 1: Find Friend

Title: Find Friend

Description: The Find Friend use case is intended for finding a user you’re
already friends with, so that you can connect with them in some
way.

System Under Design: Friend System

Primary Actor: End User

Participants: End User, Admin

Goals: Successfully find a desired friend and take some action.

Following Use Cases:

Invariant:

Precondition: Expects the user to have the other user as an added friend.

Success Post Condition: The user can perform certain actions with a desired friend like
direct message them or invite them to a chat room.

Actor Actions System Responses

1. Find friend in friends list 2. Confirm dialogue appears

3. Confirm selection 4. Dialogue disappears



Use Case 2: Find Friend by Name

Title: Find Friend by Name

Description: The Find Friend by Name use case is intended for finding other
users of the application who have been made friends, by typing
their name in a search bar.

System Under Design: Friend System

Primary Actor: End User

Participants: End User, Admin

Goals: Successfully find the desired friend and take some action.

Following Use Cases:

Invariant:

Precondition: Expects the user to have added the other user as a friend.

Success Post Condition: The user can perform certain actions with the desired friend.

Actor Actions System Responses

1. Click search bar in friends list 2. Cursor appears in text box

3. Type the name of friend 4. Friend appears in result bar

5. Click friend name

6. Click “Invite” button



Use Case 3: Attempt to Find Non Existing Friend

Title: Attempt to Find Non Existing Friend

Description: The Attempt to Find a Non Existing Friend use case is used when
you can’t find the desired friend by scrolling through the friends
list and results in the End User having to search their friends list
by typing their name.

System Under Design: Friend System

Primary Actor: End User

Participants: End User, Admin

Goals: Successfully find the desired friend and take some action.

Following Use Cases: Find Friend by Name

Invariant:

Precondition: The End User must have not added the searched user as a friend
in the past or the End User missed the desired friend’s profile
name while scrolling through the friends list.

Success Post Condition:

Actor Actions System Responses

1. Click search bar in friends list 2. Cursor appears in text box

3. Type the name of friend 4. System indicates friend does not exist

5. Change friend name 6. Correct friend appears

7. Click “Invite” button



Use case 4: Find Friend by Selection

Title: Find Friend by Selection

Description: The Find Friends by Selection use case, an extension of the
Select From List use case, is used by End Users to find a desired
friend by scrolling through their friends list. Allowing the End User
to select the desired friend and perform some action.

System Under Design: Friend System

Primary Actor: End User

Participants: End User, Admin

Goals: Successfully find a desired friend and take some action.

Following Use Cases:

Invariant:

Precondition: Expects the user to have added another user as a friend.

Success Post Condition: The user can perform certain actions with a desired friend.

Actor Actions System Responses

1. Find friend by selecting name in friends
list

2. Confirm dialogue appears

3. Confirm selection 4. Dialogue disappears



Use case 5: Select From List

Title: Select From List

Description: The Select From List use case extends the Find Friend by
Selection use case and is used for selecting on friends in a
friends list so that some action can be performed.

System Under Design: Friend System

Primary Actor: End User

Participants: User, Admin

Goals: Successfully select a friend from the list.

Following Use Cases:

Invariant:

Precondition: Expects the user to have added another user as a friend.

Success Post Condition: The user can select a desired friend.

Actor Actions System Responses

1. The End User clicks on their friends list. 2. The friends list expands, displaying all of
the End User's current friends.

3. The End User clicks on the desired
friend's name in their list of friends.

4. The system displays actions the End
User can take with that friend.



Use Case Diagram #2



Use case 6: Login

Title: Login

Description: The Login use case is used to enter the application in order to
use its main features.

System Under Design: Login System

Primary Actor: End User

Participants: End User, Admin

Goals: Login successfully

Following Use Cases: Logout

Invariant:

Precondition: This use case assumes that the End User or Admin is not logged
in.

Success Post Condition:

ACTOR:
1) The End User or Admin enters the website
url in their browser.

3) The End User or Admin types in their email
and password in their respective boxes.

4) The End User or Admin clicks on the login
button.

SYSTEM RESPONSES:

2) The system displays the login page.

5) The system redirects the user to the app
page.



Use case 7: Logout

Title: Logout

Description: The Logout use case is used for safely exiting the application or
session.

System Under Design: Login System

Primary Actor: End User

Participants: Admin

Goals: Exit the current session

Following Use Cases:

Invariant:

Precondition: This use case assumes the End User or Admin is already logged
in.

Success Post Condition:

ACTOR:
1) The End User or Admin either clicks the
logout button or closes the browser.

SYSTEM RESPONSES:

2) The system redirects the user to the login
page if the logout button was clicked.

3) The system displays dialogue saying the
user has been signed out if the logout button
was clicked.
4) Otherwise, the system does not respond.



Use case 8: Login by typing valid credentials

Title: Login by Typing Valid Credentials

Description: This use case is a generalization for the Login use case with the
added notion that the End user or Admin is entering information
associated with an active account.

System Under Design: Login System

Primary Actor: End User

Participants: Admin

Goals: Successfully login without having to make an account

Following Use Cases: Login

Invariant:

Precondition: This use case assumes that the End User or Admin already has
an existing account.

Success Post Condition:

ACTOR:
1) The End User or Admin enters the website
url in their browser.

3) The End User or Admin types in their email
and password from a pre-existing account in
the respective boxes.

4) The End User or Admin clicks on the login
button.

SYSTEM RESPONSES:

2) The system displays the login page.

5) The system redirects the user to the app
page.



Use case 9: Logout by selection

Title: Logout by Selection

Description: The Logout by Selection use case is a generalization for the
Logout use case, and it’s used to exit the session by clicking or
“selecting” the logout button.

System Under Design: Login System

Primary Actor: End User

Participants: Admin

Goals: Successfully hit the logout button before closing the browser.

Following Use Cases: Logout

Invariant:

Precondition: The user must be logged in.

Success Post Condition: The user is logged out.

ACTOR:
1) The End User or Admin is already logged
in.

2) The End User or Admin clicks on the
logout button.

5) The End User or Admin closes their
current browser.

SYSTEM RESPONSES:

3) The system redirects the user to the login
page.

4) The system displays dialogue informing
the user that they have been signed out.



Use case 10: Logout by closing (UPDATED)

Title: Logout by Closing

Description: The Logout by Closing use case is a generalization for the Logout
use case where the End User or Admin exits their session by
closing their browser with the “stay logging in” feature turned off.

System Under Design: Login System

Primary Actor: End User

Participants: Admin

Goals: Successfully logout on browser close

Following Use Cases: Logout

Invariant:

Precondition: The user must be logged in.

Success Post Condition: The user is logged out.

ACTOR:
1) The End User or Admin has the “stay
logged in feature” turned off.

2) The End User or Admin closes their
current browser/process.

SYSTEM RESPONSES:

3) The system automatically logs the user out
of their current session.


